
WIKT 2008

Task-based Execution Engine for JBOWL

Peter Bednár, Peter Butka
CIT FEI TU Košice

2
Task-based Execution Engine for JBOWL WIKT 2008

Outline

Introduction - JBOWL library
JBOWL Extended Conceptual Architecture
Design and implementation of Execution Engine
Conclusions

3
Task-based Execution Engine for JBOWL WIKT 2008

JBOWL Library - Introduction
Java Bag-Of-Words Library (JBOWL)
Functional requirements

efficiently preprocess potentially large collections of text
documents with flexible set of available preprocessing
techniques
adopted for various types and formats of text (e.g. plain text,
HTML or XML).
text collections in different languages
support for indexing and retrieval in these text collections (and
experiments with various extended retrieval techniques).
well-designed interface to knowledge structures such as
ontologies, controlled vocabularies or WordNet

Target groups
Text mining researcher (develop, test new text mining methods)
Application developers – use of API for building of WEB or GUI
applications
Component developers – extensions or integrate of existing software
with (part of) functionality of our framework
Students – students with basic understanding of the problems that text
mining can solve.

4
Task-based Execution Engine for JBOWL WIKT 2008

JBOWL Library – Conceptual Architecture

Java Data Mining API (JSR73) – architecture has three base
components that may be implemented as one executable or
in a distributed environment

Application Programming Interface (API)
user-visible classes and interfaces that allow access to services
provided by the text mining engine (TME)
application developer using JBOWL requires knowledge only of API

Text Mining Engine (TME)
offers a set of text mining services to its API clients, manages
execution of text mining tasks and importing/exporting existing
mining objects from and to MOR.
can be implemented as a local library or as a server of client-server
architecture

Mining Object Repository (MOR)
TME uses a mining object repository which serves to persisting of
text mining objects

5
Task-based Execution Engine for JBOWL WIKT 2008

JBOWL Library – Extended Conceptual Architecture

API

TME

MOR

6
Task-based Execution Engine for JBOWL WIKT 2008

Proposed Changes in Extended JBOWL
Motivation

As-Is: local library execution, data and results locally, tasks and settings
not fully distinguished for all text-mining tasks
To-Be: task-based engine for multithread/distributed execution of tasks,
data and results available as content repository nodes, settings and
tasks of different types transparent

Extensions
Mining Object Repository

Use of Java Content Repository (JCR)
Integration of JBOWL and JCR – Mining Object Manager component maps
Java objects to JCR nodes for serialization/de-serialization (similar idea like
Hibernate)

TME – Execution Engine
Own (middleware-like) layer for running of tasks in multi-thread and potentially
distributive manner, where
Developers are able to run tasks easily, do not need to know, where the tasks
are really executed, they expect results and place where to found them

Tasks
Necessary changes regarding use of JCR for MOR implementation and new
TME implementation

7
Task-based Execution Engine for JBOWL WIKT 2008

Execution Engine – Main Interfaces API

8
Task-based Execution Engine for JBOWL WIKT 2008

Execution Engine – Connection Interface

Connection
Client obtains Connection object to TME (represent one
text-mining session) in different way

directly without user authentication
registered on the client environment using the JNDI

Client specify details for connection specification
URI of the executed engine (if there are more TME
instances)
username
password

Connection interface will allow client user to
obtain factory class to create new mining objects (i.e. data,
tasks, build and task settings etc.)
obtain MOR session to save/load mining objects in MOR
execute, inspect and terminate text-mining tasks

9
Task-based Execution Engine for JBOWL WIKT 2008

Execution Engine – Task and TaskHandler

Task
part of the client API, follow JavaBeans patterns for simple
encoding of the objects in the remote protocols
specify all parameters required for the specific task, e.g.
like references to the input data, path to output data,
models, settings, …

TaskHandler
Each type of the Task object has associated TaskHandler
object responsible to execute this task
TaskHandler object creates execution process and
perform all operations

e.g. Build Model Tasks task handler – load training data,
create new instance of the algorithm specified as the task
parameter, pass training data and build settings to the
algorithm, produce new text mining model, store in the MOR
on the path specified as the task parameter

10
Task-based Execution Engine for JBOWL WIKT 2008

Execution Engine – Connection Interface

Execution Handler
After run of new thread for task => task is executed in the
background
Client obtains Execution Handler object, which

identify running task
can be used to inspect Execution Status of the task process
or to terminate task

Execution Status
current status of the task execution

11
Task-based Execution Engine for JBOWL WIKT 2008

Conclusions

JBOWL extension as internal and logical extension
of library to

Support multi-thread running of tasks
Use of content repository paradigm for mining objects
manipulation
Encapsulate different type of tasks to run in same fashion in
TME

Next steps
Finish implementation of core extensions
Update existing methods (if needed)
Testing and evaluation

	Task-based Execution Engine for JBOWL
	Outline
	JBOWL Library - Introduction
	JBOWL Library – Conceptual Architecture
	JBOWL Library – Extended Conceptual Architecture
	Proposed Changes in Extended JBOWL
	Execution Engine – Main Interfaces API
	Execution Engine – Connection Interface
	Execution Engine – Task and TaskHandler
	Execution Engine – Connection Interface
	Conclusions

